首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   87篇
  2021年   3篇
  2020年   6篇
  2019年   6篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   10篇
  2014年   11篇
  2013年   26篇
  2012年   26篇
  2011年   22篇
  2010年   21篇
  2009年   27篇
  2008年   29篇
  2007年   18篇
  2006年   18篇
  2005年   12篇
  2004年   23篇
  2003年   15篇
  2002年   19篇
  2001年   15篇
  2000年   19篇
  1999年   18篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   10篇
  1991年   14篇
  1990年   7篇
  1989年   11篇
  1988年   10篇
  1987年   3篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1981年   5篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1975年   3篇
  1974年   6篇
  1973年   5篇
  1970年   4篇
  1967年   4篇
  1954年   3篇
排序方式: 共有569条查询结果,搜索用时 85 毫秒
21.
Phytoplankton productivity was measured in Byram Lake Reservoir during summer 1977. Depth integrated productivity (0–5 gC m– 2 d–1) increased with station depth, which together with visibility measurements indicated that light did not limit deep station productivity (C1 and S2). Macrophytes at station C5 (shallow) reduced the euphotic zone to 0 in June.On a unit depth basis, C5 was the most productive station. Apparently changes in macrophyte growth, regulated by light and temperature, controlled phytoplankton production. At C1, productivity was related to levels of different nutrients at different depths, the thermocline influencing nutrient availability at mid-depth. At S2, NH3-N controlled mid-depth productivity. Surface and mid-depth productivity appeared influenced by factors not measured in this study.  相似文献   
22.
When substituted steroids of several classes are added to cultures of rat bone marrow cells in the presence of erythropoietin a consistent enhancement of the number of colonies of hemoglobin synthesizing cells is obtained. Maximum steroid effectiveness was found to be between 10(-6) and 10(-7) M. Representative compounds of several classes of steroids were examined for their ability to enhance colony growth, including delta 4-estrenes, delta 4-androstenes, 5alpha-H androstanes and estranes, 5beta-H estranes, pregnanes and androstanes. While testosterone and its 5alpha-H derivatives had little or no activity, many synthetic derivatives of testosterone were highly active in increasing erythroid colony growth. All 5beta-H androstanes, estranes, and all but one 5beta-H pregnane were active. Cortisol consistently inhibited colony growth and estradiol and progesterone had no significant effect.  相似文献   
23.
14C-17-Hydroxyprogesterone was incubated with 7000 × g × 20 min supernatants of rat testis homogenates in the presence of various concentrations of 3H-progesterone, both under conditions where metabolism would take place and where it would be prevented. When metabolism was prevented, the ratio of progesterone to 17-hydroxyprogesterone in the microsomal fraction was 3 times that which was added to the incubation medium.Progesterone competitively inhibited 17,20-lyase action on added 17-hydroxyprogesterone but not on 17-hydroxyprogesterone formed from the added progesterone. The rate of formation of 17-hydroxyprogesterone from progesterone, however, was inhibited by added 17-hydroxyprogesterone. The results indicate that there is no free exchange of an intermediate between progesterone and androstenedione with the soluble fraction, either inside or outside the microsomal vesicle. The limited exchange with 17-hydroxyprogesterone in solution probably represents exchange with an enzyme-bound intermediate.  相似文献   
24.
25.
26.
Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against CINNAMOYL CoA-REDUCTASE1 driven by the promoter from CELLULOSE SYNTHASE7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification.  相似文献   
27.
Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.  相似文献   
28.
ClpS2 is a small protein under development as a probe for selectively recognizing N-terminal amino acids of N-degron peptide fragments. To understand the structural basis of ClpS2 specificity for an N-terminal amino acid, all atom molecular dynamics (MD) simulations were conducted using the sequence of a bench-stable mutant of ClpS2, called PROSS. We predicted that a single amino acid leucine to asparagine substitution would switch the specificity of PROSS ClpS2 to an N-terminal tyrosine over the preferred phenylalanine. Experimental validation of the mutant using a fluorescent yeast-display assay showed an increase in tyrosine binding over phenylalanine, in support of the proposed hypothesis.  相似文献   
29.
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.Plant cells are surrounded by a flexible yet durable extracellular matrix that makes up the cell wall. This structure offers mechanical strength that counters osmotically driven turgor pressure, is an important factor for water movement in plants, acts as a physical barrier against pathogens (Somerville et al., 2004), and is a determining factor for plant cell morphogenesis. Hence, the cell wall plays a central role in plant biology.Two main types of cell walls can typically be distinguished: the primary and the secondary cell wall. The major load-bearing component in both of these cell walls is the β-1,4-linked glucan polymer cellulose (Somerville et al., 2004). Cellulose polymers are synthesized by plasma membrane (PM)-localized cellulose synthase (CesA) complexes (Mueller and Brown, 1980), which contain several CesA subunits with similar amino acid sequences (Mutwil et al., 2008a). The primary wall CesA complexes are believed to be assembled in the Golgi and are subsequently delivered to the PM via vesicular trafficking (Gutierrez et al., 2009), sometimes associated with Golgi pausing (Crowell et al., 2009). Furthermore, the primary wall CesA complexes are preferentially inserted into the PM at sites that coincide with cortical microtubules (MTs), which subsequently guide cellulose microfibril deposition (Gutierrez et al., 2009). Hence, the cortical MT array is a determinant for multiple aspects of primary wall cellulose production.The actin cytoskeleton plays a crucial role in organized deposition of cell wall polymers in many cell types, including cellulose-related polymers and pectins in tip-growing cells, such as pollen tubes and root hairs (Hu et al., 2003; Chen et al., 2007). Thus, actin-depolymerizing drugs and genetic manipulation of ACTIN genes impair directed expansion of tip-growing cells and long-distance transport of Golgi bodies with vesicles to growing regions (Ketelaar et al., 2003; Szymanski, 2005). In diffusely growing cells in roots and hypocotyls, loss of anisotropic growth has also been observed in response to mutations to vegetative ACTIN genes and to actin-depolymerizing and -stabilizing drugs (Baluska et al., 2001; Kandasamy et al., 2009). While actin is clearly important for cell wall assembly, it is less clear what precise roles it plays.One well-known function of actin in higher plants is to support intracellular movement of cytoplasmic organelles via actomyosin-based motility (Geisler et al., 2008; Szymanski, 2009). During primary wall synthesis in interphase cells, treatment with the actin assembly inhibitor latrunculin B (LatB) led to inhibition of Golgi motility and pronounced inhomogenities in CesA density at the PM (Crowell et al., 2009; Gutierrez et al., 2009) that coincided with the density of underlying and immobile Golgi bodies (Gutierrez et al., 2009). These results suggested that Golgi motility is important for CesA distribution (Gutierrez et al., 2009). The actin cytoskeleton also appears to be important for secondary wall cellulose microfibril deposition. For example, longitudinal actin filaments (AFs) define the movement of secondary wall CesA-containing Golgi bodies in developing xylem vessels (Wightman and Turner, 2008). In addition, it has been proposed that the AFs also can regulate the delivery of the secondary wall CesA complex to the PM via pausing of the Golgi (Wightman and Turner, 2008). It is therefore clear that actin organization is important for CesA distribution and for the pattern of cellulose microfibril deposition.Despite the above findings, very few reports have undertaken detailed studies to elucidate the role of the actin cytoskeleton in the distribution and trafficking of specific proteins in plant cells. Here, we have investigated the intracellular trafficking of CesA-containing vesicles and delivery of CesAs to the PM, in the context of the actin cytoskeleton. We quantitatively demonstrate that the organization of the actin cytoskeleton regulates CesA-containing Golgi distribution and the exocytic and endocytic rate of the CesAs. However, actin organization has no effect on the localized insertion of CesAs at sites of MTs at the PM.  相似文献   
30.
Host jumps by microbial symbionts are often associated with bursts of species diversification driven by the exploitation of new adaptive zones. The objective of this study was to infer the evolution of habitat preference (decaying plants, soil, living fungi, and living plants), and nutrition mode (saprotrophy and mycoparasitism) in the fungal genus Trichoderma to elucidate possible interkingdom host jumps and shifts in ecology. Host and ecological role shifts were inferred by phylogenetic analyses and ancestral character reconstructions. The results support several interkingdom host jumps and also show that the preference for a particular habitat was gained or lost multiple times. Diversification analysis revealed that mycoparasitism is associated with accelerated speciation rates, which then suggests that this trait may be linked to the high number of species in Trichoderma. In this study it was also possible to infer the cryptic roles that endophytes or soil inhabitants play in their hosts by evaluating their closest relatives and determining their most recent ancestors. Findings from this study may have implications for understanding certain evolutionary processes such as species radiations in some hyperdiverse groups of fungi, and for more applied fields such as the discovery and development of novel biological control strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号